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Abstract: The load flow is the most basic tool for investigating the requirements of a power system
and understanding its performance with fixed transmission line parameters and for specified sets
of load and generation values. The common formulation of the power flow problem has all the
input data specified at a specific time and conditions with fixed values. However, these data are
approximate and do not take the measurement errors in transmission line and variation in load
demand into consideration. When the input conditions are uncertain, a reliable load flow solution
is needed that incorporates the effect of data uncertainty. This paper addresses the problem of
uncertainties in the input parameters by specifying them as compact intervals, taking into con-
sideration the errors in modeling and measurement of transmission line parameters and also the
continuous influence of load measurement errors and fluctuation in the load demand. The load
flow or power flow equations are modeled as a set of nonlinear algebraic equations. These systems
of equations are first linearized using Taylor Series expansion and the solution is obtained by the
Krawczyk’s method of interval arithmetic. The proposed methodology is implemented in MATLAB
environment using the INTLAB toolbox. The method is applied to 3 bus, 14 bus, 30 bus and 57
bus IEEE test systems. The results obtained are bounded and thus help in providing an insight
to the operation and future expansion of the power system. These results are also compared with
those obtained with another iterative method for solving interval linear equation systems.

Keywords: interval mathematics, load flow analysis, uncertain data, Newton Raphson method,
Intlab toolbox, Krawczyk’s method

1. Introduction

The optimal load flow problem has had a long history in its development for more than 25 years.
A generalized formulation of the economic dispatch problem including voltage and other operating
constraints was introduced and was later named the optimal power or load flow problem (OPF)
(Abdel-Hady and Abdel-Aal Hassan, 2012). Power flow studies are the backbone of power system
analysis and design. They are necessary in planning and designing the future expansion of power
systems as well as in determining the best operation of existing systems.

Modern power systems are operating under highly stressed and unpredictable conditions because
of many issues like market-oriented reforms, consumer utility, measurement errors, use of renewable
generation and electric vehicles, etc. The changes resulting from these uncertain factors lead to
higher requirements for the reliability of power grids. In this situation, conventional methodologies
cannot be applied, so robust and reliable methods become very essential.
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The load flow problem in an electric power system is concerned with solving a set of static
nonlinear equations describing the electric network performance. The problem is formulated on
the basis of Kirchhoff’s laws in terms of active and reactive power injections and voltages at each
node in the system. Load flow studies or power flow studies is the basic tool for investigating the
requirements of power system, viz., generation should be sufficient to meet demand and losses,
bus voltages should be in specified range and reactive powers limits of generator buses should be
within limits (Grainger and Stevenson, 1994). This information is essential for planning for future
expansion such as adding new generator sites to meet increased load demand, operation of the
current state of the system, exchange of power between utilities, etc.

The principal information obtained from a power flow study is the magnitude and phase angle
of the voltage at each bus and the real and reactive power flow in each line (Hadi Saadat, 2002). As
four quantities are involved, four independent constraints are required. In the load flow problem,
the buses in the power grid are generally divided into three categories, i.e., slack bus, load bus PQ,
and regulated or generator bus PV . A slack bus which is taken as reference is specified with both
bus voltage magnitude and phase angle. A PQ bus which can typically be a substation or a power
plant with fixed real and reactive power is specified with both active and reactive power injections.
A PV bus which is usually a substation with adjustable reactive compensation devices or a power
plant with reactive reserves is specified with real power injection and bus voltage magnitude. In
reality, a power plant that has adequate capacity and is responsible for frequency control is often
selected as a slack bus (Almeida et. al, 1994).

The mathematical formulation of the load flow problem results in a system of algebraic nonlinear
equations where the input data are considered to be fixed for all time at all system conditions.
However, in reality the models used in power flow analysis are only approximations. The network
parameters are usually approximated even though the uncertainties may arise from variances in the
model parameters of transmission system elements, such as resistance, reactance and/or capacitance
values due to environmental conditions and measurement errors. Also, the specified variables, like
real power at PV buses, are inaccurate as they may have measurement errors (Wang and Alvarado,
1994). Further, the demands can vary in a fast and disordered way. Moreover, the uncertainty
in the input data can be enlarged due to both rounding and truncating processes that occur in
numerical computations (Barboza, Dimuro and Reiser, 2004). Therefore, the final results obtained
by conventional methods are wrongly implemented in the system. So, a more reliable power flow
algorithm is required which allows the analysts to incorporate both the estimate in data and
solution tolerance, i.e., the uncertainty in input parameters and the effect of propagation of data
inaccuracies, thus obtaining a range of values for each output quantity (Vaccaro et.al, 2009; Vaccaro
et. al, 2013).

Researchers and power engineers have recognized the importance of these uncertainties. Wang
and Alvarado are the pioneers in this field where the authors have solved the interval nonlinear
equations using the Newton operator and the Gauss Seidel method in (Wang and Alvarado, 1994).
Later, in (Barboza, Dimuro and Reiser, 2004) load uncertainty has been dealt by solving the
nonlinear equations using Krawczyk’s method (Moore, 1966). Recently, many authors have used
optimization techniques to address the existence of uncertainty in power flow problem (Dimitrovski
and Tomsovic, 2004; Vaccaro et.al, 2009; Vaccaro et. al, 2010; Vaccaro et. al, 2013).
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In order to overcome the aforesaid limitations and also control these numerical errors, we propose
to apply the technique of interval arithmetic in the Newton-Raphson approach of power flow
analysis. In this paper, we develop a methodology by taking into account the various uncertainties.
Here, the input parameters are represented as intervals taking into consideration

− the errors in modeling and measurement of transmission line parameters.

− influence of the load measurement errors and fluctuation in the demand.

The nonlinear system is first linearized by the Newton Raphson method and then Krawczyk’s
method of interval mathematics is applied to solve the system of linearized equations. The im-
plementation is performed in MATLAB environment, using the INTLAB toolbox developed by S.
Rump (Rump, 1999). The proposed methodology is tested on 3 bus, 14 bus, 30 bus and 57 bus
IEEE test systems.

The rest of the paper is organized as follows: Section II reviews some basic concepts related to
interval arithmetic and interval systems. In Section III, we give the main characteristics of load
flow problem. In Section IV we describe the interval arithmetic applied to the load flow problem
with the proposed approach. In Section V, we give the results on the test problems followed by
conclusion section.

2. Interval Arithmetic

Interval arithmetic, interval mathematics, interval analysis, or interval computation, is a method
developed by mathematicians since the 1950s and 1960s as an approach to putting bounds on
rounding errors and measurement errors in mathematical computation, thus developing numerical
methods that yield reliable results. It is an arithmetic developed by R. E. Moore that is defined
on sets of intervals instead on sets of real numbers (Moore, 1966). It combines interval arithmetic
with analytic estimation techniques to compute the sharpest possible interval solution set which
completely contains the true solution set. The power of interval arithmetic lies in its implementation
on computers. It solves problems which are unsolvable by non-interval methods and has been used
recently for global optimization, solving ordinary differential equations, linear systems, optimiza-
tion, etc. Interval arithmetic is a logical extension of standard arithmetic that uses operators defined
over real intervals.

Following the notations given by (Moore, 1966) and (Ralhan and Ray, 2013), let,

x = [a, b]|a ≤ b, a, b ∈ R (1)

be a real interval where a is the infimum (lower endpoint) and b is the supremum (upper endpoint)
of x. The width of interval is defined as w(x)= a − b. The midpoint of the interval is defined
as m(x)= (a + b)/2. For a n dimensional interval vector x∗ = [x1,x2, ...,xn], the midpoint of
interval vector x∗ is given by m(x∗)=[m(x1),m(x2), ...,m(xn)]. The width of interval vector is
w(x∗)=[w(x1), w(x2), ..., w(xn)]. A degenerate interval has both its lower and upper endpoints
same.
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Let x= [a, b] and y= [c, d] be two intervals. Let +, −, ∗ and / denote the operation of addition,
subtraction, multiplication and division, respectively. If ⊗ denotes any of these operations for the
arithmetic of real numbers x and y, then the corresponding operation for arithmetic of interval
numbers x and y is,

x⊗ y=[x⊗ y | x ∈ x, y ∈ y]

The above definition is equivalent to the following rules:

x + y = [a+ c, b+ d]

x− y = [a− d, b− c]
x ∗ y = [min(ac, bc, ad, bd),max(ac, bc, ad, bd)]

x/y = [x ∗ [1/d, 1/c]], 0 /∈ y

.
An interval function F (x1,x2, ...,xn) of intervals x1,x2, ...,xn is an interval valued function

of one or more variables. F (x1,x2, ...,xn) is said to be an interval extension of a real function
f(x1, x2, ..., xn) if f(x1, x2, ..., xn) ∈ F(x1,x2, ...,xn), whenever xi ⊂ xi for all i = 1, 2, ..., n. F is
said to be inclusion monotonic if,

xi ⊂ yi =⇒ F (x1,x2, ...,xn) ⊂ F (y1,y2, ...,yn) (2)

.
Also, F (x1,x2, ...,xn) contains the range of f(x1, x2, ..., xn). Interval functions F (x) can be

constructed in any programming language in which interval arithmetic is implemented, viz., C/C++
and Fortran 90/95, Maple, MATLAB, etc. However, the computations are slow and costly. Com-
puting an interval bound carries a cost of 2 to 4 times as much effort as evaluating f(x) (Moore,
1966; Hansen, 1992). INTLAB implemented with MATLAB enables basic interval operations to be
performed on real and complex interval scalars, vectors and matrices.

3. Load Flow Review

The power flow equations (Hadi Saadat, 2002; Chen et. al, 2008) to describe an n bus system
shown in Figure 1, are formulated using the bus admittance matrix Y as:

Ii =
n∑
j=1

YijVj (3)

where Ii is the current entering in bus i and Yij is the admittance between the ith and jth buses.
These equations are established using the bus analysis which results in node voltages as independent
variables.
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Figure 1. A Typical bus of Power system.

In polar form Eq.(3) is expressed as,

Ii =

n∑
j=1

|Yij |∠θij |Vj |δj (4)

where, |Yij | is the magnitude and ∠θij is the angle of the admittance |Yij | and |Vj | is the magnitude
and ∠δj is the phase angle of the voltage. The complex power at bus i is,

Pi − jQi = V ∗
i Ii (5)

Pi is the net real power injection and Qi is the net reactive power injection at bus i
Again, from Eqs.(4) and (5),

Pi − jQi = |Vi|∠− δi
n∑
j=1

|Yij ||Vj |∠θij + δj (6)

Thus,

Pi =
n∑
j=1

|Vi||Vj ||Yij | cos(θij − δi + δj) (7)

Qi =
n∑
j=1

|Vi||Vj ||Yij | sin(θij − δi + δj) (8)

The general practice in power flow studies is to identify the three types of buses in the network.
At each bus i, out of the four quantities δi, |Vi|, Pi, and Qi, two are specified and the remaining two
are determined. Specified quantities are chosen according to the criteria explained in the following
subsections.
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3.1. Load Buses

At each non generator bus i, called a load bus or a PQ bus, both Pgi andQgi are zero and Pdi andQdi
drawn from the system by the load are known from historical record, load forecast, or measurement,
where the suffixes g and d denote generator and demand. Therefore, the two unknown quantities
those to be determined are δi and |Vi|. Initially δi and |Vi| are set as 0.0 and 1.0, respectively.

3.2. Voltage Controlled Buses

Any bus of the system at which the voltage magnitude is kept at a constant is said to be a voltage-
controlled bus. A generator bus is usually called a voltage-controlled or a PV bus. A prime mover
of any generator can control the amount of generated megawatts (MW), whereas generator voltage
magnitude can be controlled by generators excitation system. Therefore, at each generator bus i
both |Vi| and Pgi may be properly specified. The two unknown quantities that must be determined
are δi and Qi. Initially δi is taken as 0.0.

3.3. Slack Bus

The voltage angle of a slack bus serves as a reference for the angles of all other bus voltages. Thus,
the usual practice is to set δi to zero degree. Voltage magnitude of the slack bus |Vi| is also specified.
Therefore, the two unknown quantities Pi and Qi must be determined during the load flow analysis.

3.4. Conventional Load Flow Problem Formulation

The set of equations given by Eq.(7) constitute a set of nonlinear algebraic equations as a function
of voltage magnitude in per unit and phase angle in radians. Generalizing,

P(|V|, δ) = Ps

Q(|V|, δ) = Qs (9)

If (Vk, δk) is an initial estimate and ∆V and ∆δ are small deviations in voltage magnitudes and
angles respectively, except the slack bus then,

P(Vk + ∆V, δk + ∆δ) = Ps

Q(Vk + ∆V, δk + ∆δ) = Qs (10)

Expanding Eq.(10) in Taylor series about an initial estimate (Vk, δk) and neglecting higher order
terms, we obtain,

PVk,δk + ∆V
∂PVk,δk

∂V
+ ∆δ

∂PVk,δk

∂δ
−Ps = 0

QVk,δk
+ ∆V

∂QVk,δk

∂V
+ ∆δ

∂QVk,δk

∂δ
−Qs = 0 (11)
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Hence, [
Ps −PVk,δk
Qs −QVk,δk

]
=


∂PVk,δk

∂δ

∂PVk,δk
∂V

∂QVk,δk
∂δ

∂QVk,δk
∂V

[ ∆δ
∆|V|

]
(12)

Elements of the Jacobian matrix are the partial derivatives of Eqs.(7) and (8) for i = 2, ..., n,
evaluated at (Vk, δk) and bus 1 is assumed to be the slack bus. Using the initial estimates given in
Sections 3.1, 3.2 and 3.3, PVk,δk and QVk,δk are calculated using Eqs.(7) and (8) respectively for
each bus. Writing in compact form,[

∆P
∆Q

]
=

[
J1 J2

J3 J4

] [
∆δ

∆|V|

]
(13)

Therefore, [
∆δ

∆|V|

]
= J−1

[
∆P
∆Q

]
(14)

Expressing Eq.(14) as,
Jx = b (15)

where,

x =

[
∆δ

∆|V|

]
(16)

J =

[
J1 J2

J3 J4

]
(17)

and

b =

[
∆P
∆Q

]
(18)

The above equations have inherent assumptions which include the factors, such as the three
phase system is in balanced, steady-state condition so that the frequency and voltage are constant,
the real and reactive power demands are known and specified precisely, the real power injection
and voltage magnitude of generators are fixed, and the network topology and impedances are
known precisely. But these are not valid, at least in true sense. The uncertainties may be induced
by modeling errors due to the approximations in the values of the resistances, reactances and
shunts in the models which are used to represent transmission lines and transformers. The practical
power systems are very large with tens of thousands of buses. As a consequence, the probability of
data errors increases dramatically with system size. Therefore, we take the data uncertainty into
consideration by characterizing the load and transmission line parameters as a range of real values
or a real interval instead of crisp values.
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4. Load Flow Solution using Interval Method

As the uncertainties in the data could affect the deterministic power flow solution to a considerable
extent, reliable solution algorithms that incorporate the effect of data uncertainties into the load
flow analysis are therefore required. In this way, the uncertainty propagation effect is explicitly
considered and the bounded values for power flow studies can be assessed. Thus, the voltages, angles
and powers are obtained as intervals that include all computational errors and all the possible results
obtained by computations with real numbers. The known real and reactive power injections Pi, Qi,
as well as other input line parameters are modeled as intervals that are estimated in the beginning
of the process. The magnitude and angle of voltages are unknown intervals to be determined
for all buses except the slack bus. In order to reach the solution, we use the Krawczyk method
which is an iterative method to solve interval linear system of equations (Moore, Baker and Cloud,
2008; Hansen, 1992).

4.1. Krawczyk Method

The power flow equations (Eqs.(13), (14), and (15)) have been obtained after linearization using
Taylor series expansion method. Since we have taken the uncertainty in the transmission line
parameters, i.e, resistances and reactances, the Jacobian J is an interval matrix. Also, the variations
in power lead to interval vectors (which are actually nonlinear in nature but are linearized). By
using the Krawczyk method, along with interval arithmetic we can obtain the solution of the finite
system of linear equations. Consider a system of finite system of linear equations represented as,

Jx = b (19)

i, e., x = J−1b (20)

Let Y be an approximate inverse of J, i.e.,

Y ' J−1 (21)

Multiplying both sides of Eq.(19) by Y. We have,

YJx = Yb (22)

From Eq.(20) and Eq.(22), we get,

[I−YJ]x = J−1b−Yb (23)

Let us consider,
E = I−YJ (24)

Therefore, Eq.(23) can be written as,
Ex = x−Yb (25)

or,
x = Yb + Ex (26)
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The norm of an interval matrix say A is given by,

||A|| = maxi
∑
j

|Aij | (27)

Since E is an interval matrix ||E|| = maxi
∑

j |Eij |. So if ||E|| ≤ 1 using Eq.(27), then the sequence,

x(k+1) = Yb + Ex(k) ∩ x(k); k = 0, 1, 2, ... (28)

x
(0)
i = [−1, 1]||Yb||/(1− ||E||); i = 0, 1, ..., n

is a nested sequence of interval vectors containing the unique solution to Eq.(19) for every interval
matrix J and every interval vector b. From Eq.(28) the new estimates for the bus voltage angle
and magnitude are respectively obtained as,

δ(k+1) = δ(k) + ∆δ(k) (29)

|V (k+1)| = |V (k)|+ ∆|V (k)| (30)

Since nonlinearities in the power system can be said to be encompassed by intervals in the linearized
system (Kearfott, 1991; Hansen, 1992), Eqs.(29) and (30) give us a bounded and converging solution
for the non linear power flow equations.

5. Results

In this section we test the performance of the proposed method. For this we have carried out the
tests on these standard systems, namely IEEE 3 bus, 14 bus, 30 bus and 57 bus test power systems
from the Archive, by conventional load flow and interval load flow methods. We specify the loads
and generation in Mega Watt (MW) and Mega Volt Ampere Reactive (MVAR), respectively, bus
voltages in per unit, and their angles in degrees. Loads and generations are converted into per unit
quantities on the base Mega Volt Ampere (MVA) selected. Three types of tests are performed on
all the systems

1. Available data has been taken as fixed data without any uncertainty

2. Measurement error of 2% in the transmission line parameters was considered.

3. A 10% variation in active and reactive powers of load and generator were carried out.

The test cases considered are as given in the subsequent subsections. In this paper, we implement
the methods in MATLAB environment using the INTLAB toolbox (Rump, 1999).

5.1. IEEE 3 bus system

The 3 bus network shown in Figure 2 consists of one load bus (PQ bus, bus 2), one generator bus
(PV bus, bus 3) and a slack bus (reference bus, bus 1) and has three circuits whose parameters,
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Figure 2. 3 Bus Test Case.

Table I. Line data for 3 bus test case.

Bus Bus Rp.u. Xp.u. C(MV ar) Tr.TapSet.

1 2 0.02 0.04 0 1

1 3 0.01 0.03 0 1

2 3 0.0125 0.025 0 1

i.e., resistance, reactance and capacitance are shown in Table I. Table II shows power flow data for
the test case. Initially, we consider that the power at load bus is accurate and measurement errors
are equal to zero.

With conventional Newton Raphson method we obtain the results as shown in Table III without
considering any uncertainty in the input data. In the table we show the magnitude and angle of
voltages at all system buses (|V | is magnitude of bus voltage, δ is the angle in degrees), PD and
QD, PG and QG are the active and reactive powers of load, generator and slack buses.

Then, we consider the existence of uncertainties in the values of the input data as mentioned
above and Table IV and Table V show the results of the simulations performed using interval
arithmetic. The active power at the slack bus for 2% variation in power load measurements is
[1.4736, 2.8930] using intervals and by conventional method, it is 2.1482 p.u. which is inclusive in
that range. Similarly, the reactive power at slack bus by conventional method is 1.4085 and interval
value is [1.0008, 1.8217].

Table II. Bus data for 3 bus test case.

Bus V (p.u.) Angle (deg) PD QD PG QG Qmin Qmax MVar

1 1.05 0 0 0 0 0 0 0 0

2 1.00 0 −4 −2.5 0 0 0 0 0

3 1.04 0 0 0 2 0 0 0 0
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Table III. Load Flow Solution for 3 bus system with conven-
tional Newton Raphson method.

Bus |V | δ(deg.) PD QD PG QG

1 1.05 0 0 0 2.1842 1.4085

2 0.97168 -0.04706 -4 -2.5 0 0

3 1.04 0.008705 0 0 2 1.4617

Table IV. Load Flow Solution for 3 bus Interval system with
variation in load power.

Bus |V | δ(deg.) QG

1 [1.0500, 1.0501] [0.0000, 0.0000] [1.0008, 1.8217]

2 [0.9637, 0.9797] [-3.5040, -1.8889] [0.0000, 0.0000]

3 [1.0400, 1.0401] [-1.0924, 0.0948] [0.1240, 2.7880]

5.2. IEEE 14 bus system

The 14 bus IEEE test case shown in Figure 3 has been analyzed in the same way. Table VI shows the
results with the conventional Newton Raphson method. Table VII and Table VIII show the results
of the simulations performed using Interval mathematics considering the existence of uncertainties
in the values of the input data. The active power at the slack bus for 2% variation in power load
measurements is [1.9931, 2.6583] using intervals and the interval value of reactive power at slack
bus is [-0.2301, -0.0757].

5.3. IEEE 30 bus system

Next we consider 30 bus IEEE test case. Table IX and Table X show the results of the simulations
performed using Interval mathematics considering the existence of uncertainties in the values of
the input data. The active power at the slack bus for 2% variation in power load measurements

Table V. Load Flow Solution for 3 bus Interval system with
variation in line parameters and load power.

Bus |V | δ(deg.) QG

1 [1.0500, 1.0501] [0.0000, 0.0000] [1.0010, 1.8219]

2 [0.9637, 0.9797] [-3.5024, -1.8880] [0.0000, 0.0000]

3 [1.0400, 1.0401] [-1.0918, 0.0949] [0.1237, 2.7877]
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Table VI. Load Flow Solution for 14 bus system with conventional
Newton Raphson method.

Busno. V (p.u.) δ(deg.) PD QD PG QG

1 1.060 0.000 0.000 0.000 2.746 −0.238

2 1.045 −6.149 0.217 0.127 0.004 0.628

3 1.010 −13.781 0.942 0.190 0.000 0.272

4 1.014 −11.178 0.478 −0.039 0.000 0.000

5 1.017 −9.603 0.076 0.016 0.000 0.000

6 1.070 −15.283 0.112 0.075 0.000 0.216

7 1.050 −14.159 0.000 0.000 0.000 0.000

8 1.090 −14.159 0.000 0.000 0.000 0.246

9 1.034 −15.732 0.295 0.166 0.000 0.000

10 1.032 −15.935 0.090 0.058 0.000 0.000

11 1.047 −15.727 0.035 0.018 0.000 0.000

12 1.054 −16.136 0.061 0.016 0.000 0.000

13 1.047 −16.178 0.135 0.058 0.000 0.000

14 1.021 −16.952 0.149 0.050 0.000 0.000

Table VII. Load Flow Solution for 14 bus Interval system with
variation in load power.

Bus |V | δ(deg.) QG

1 [1.0600, 1.0601] [0.0000, 0.0000] [-0.2381, -0.0757]

2 [1.0449, 1.0450] [-6.7794, -4.1951] [-0.0671, 1.0016]

3 [1.0100, 1.0101] [-14.3743, -11.1098] [-0.1268, 0.6576]

4 [1.0110, 1.0176] [-11.5647, -8.9499] [0.0000, 0.0000]

5 [1.0143, 1.0202] [-9.8895, -7.6405] [0.0000, 0.0000]

6 [1.0700, 1.0701] [-16.1462, -12.6894] [-0.7583, 1.1850]

7 [1.0472, 1.0535] [-14.8825, -11.6226] [0.0000, 0.0000]

8 [1.0900, 1.0901] [-14.8825, -11.6226] [0.2152, 0.2748]

9 [1.0288, 1.0386] [-16.6281, -13.0375] [0.0000, 0.0000]

10 [1.0277, 1.0375] [-16.8653, -13.2181] [0.0000, 0.0000]

11 [1.0446, 1.0504] [-16.6346, -13.0615] [0.0000, 0.0000]

12 [1.0517, 1.0553] [-17.1042, -13.4328] [0.0000, 0.0000]

13 [1.0445, 1.0497] [-17.1593, -13.4572] [0.0000, 0.0000]

14 [1.0155, 1.0272] [-18.0196, -14.1104] [0.0000, 0.0000]
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Figure 3. 14 Bus Test System.

Table VIII. Load Flow Solution for 14 bus Interval system with
variation in line parameters and load power.

Bus |V | δ(deg.) QG

1 [1.0600, 1.0601] [0.0000, 0.0000] [-0.2386, -0.0762]

2 [1.0449, 1.0450] [-6.7826, -4.1989] [-0.0669, 1.0019]

3 [1.0100, 1.0101] [-14.3765, -11.1134] [-0.1270, 0.6575]

4 [1.0110, 1.0176] [-11.5672, -8.9534] [0.0000, 0.0000]

5 [1.0143, 1.0202] [-9.8922, -7.6440] [0.0000, 0.0000]

6 [1.0700, 1.0701] [-16.1464, -12.6910] [-0.7584, 1.1849]

7 [1.0472, 1.0535] [-14.8835, -11.6249] [0.0000, 0.0000]

8 [1.0900, 1.0901] [-14.8835, -11.6249] [0.2152, 0.2749]

9 [1.0288, 1.0387] [-16.6284, -13.0392] [0.0000, 0.0000]

10 [1.0277, 1.0375] [-16.8654, -13.2197] [0.0000, 0.0000]

11 [1.0446, 1.0504] [-16.6347, -13.0630] [0.0000, 0.0000]

12 [1.0517, 1.0553] [-17.1040, -13.4341] [0.0000, 0.0000]

13 [1.0445, 1.0497] [-17.1591, -13.4585] [0.0000, 0.0000]

14 [1.0155, 1.0272] [-18.0192, -14.1115] [0.0000, 0.0000]

is [2.2425, 2.9780] using intervals which is inclusive in that range. Similarly, the reactive power at
slack bus has interval value is [-0.2544,-0.0803] .

5.4. IEEE 57 bus system

Finally we consider 57 bus IEEE test case. In this case a measurement error of 2% in the transmission
line parameters was assumed. Tables XI and XII show the results of the simulations performed using
interval arithmetic considering the existence of uncertainties in the values of the input data. Next
a 20% variation in active and reactive powers of load and generator were assumed. This was done
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Table IX. Load Flow Solution for 30 bus Interval system with variation
in load power.

Bus |V | δ(deg.) QG

1 [ 1.0600, 1.0601] [0.0000, 0.0000] [ -0.2544, -0.0803]

2 [ 1.0429, 1.0430] [ -6.3511, -4.6426] [ -0.0873, 1.0649]

3 [ 1.0186, 1.0244] [ -9.0298, -6.9783] [0.0000,0.0000]

4 [ 1.0097, 1.0160] [ -10.9077, -8.4153] [0.0000, 0.0000]

5 [ 1.0100, 1.0101] [ -16.1915, -12.5710] [ -0.2099, 0.9167]

6 [ 1.0096, 1.0145] [ -12.8548, -9.9412] [ 0.0000, 0.0000]

7 [ 1.0011, 1.0058] [ -14.8170, -11.4820] [0.0000,0.0000]

8 [ 1.0100, 1.0101] [ -13.6719, -10.5588] [ -0.6206, 1.2306]

9 [ 1.0464, 1.0556] [ -16.2159, -12.6518] [ 0.0000, 0.0000]

10 [ 1.0365, 1.0522] [ -17.9750, -14.0733] [ 0.0000, 0.0000]

11 [ 1.0820, 1.0821] [ -16.2159, -12.6518] [ 0.1267, 0.1953]

12 [ 1.0530, 1.0617] [ -17.1766, -13.4283] [ 0.0000, 0.0000]

13 [ 1.0709, 1.0710] [ -17.1766, -13.4283] [ 0.0536, 0.1546]

14 [ 1.0362, 1.0487] [ -18.1762, -14.2064] [ 0.0000, 0.0000]

15 [ 1.0307, 1.0449] [ -18.2662, -14.2903] [ 0.0000, 0.0000]

16 [ 1.0381, 1.0513] [ -17.8166, -13.9444] [ 0.0000, 0.0000]

17 [ 1.0311, 1.0472] [ -18.1645, -14.2121] [ 0.0000, 0.0000]

18 [ 1.0193, 1.0366] [ -18.9491, -14.8180] [ 0.0000, 0.0000]

19 [ 1.0160, 1.0345] [ -19.1381, -14.9658] [ 0.0000, 0.0000]

20 [ 1.0203, 1.0383] [ -18.9045, -14.8000] [ 0.0000, 0.0000]

21 [ 1.0229, 1.0413] [ -18.4906, -14.4464] [ 0.0000, 0.0000]

22 [ 1.0235, 1.0418] [ -18.4724, -14.4368] [ 0.0000, 0.0000]

23 [ 1.0183, 1.0361] [ -18.7160, -14.6088] [ 0.0000, 0.0000]

24 [ 1.0112, 1.0319] [ -18.9230, -14.7373] [ 0.0000, 0.0000]

25 [ 1.0098, 1.0279] [ -18.4728, -14.3749] [ 0.0000, 0.0000]

26 [ 0.9902, 1.0122] [ -19.0010, -14.6834] [ 0.0000, 0.0000]

27 [ 1.0185, 1.0330] [ -17.8839, -13.9411] [ 0.0000, 0.0000]

28 [ 1.0080, 1.0135] [ -13.5871, -10.5278] [ 0.0000, 0.0000]

29 [ 0.9965, 1.0154] [ -19.2754, -14.9973] [ 0.0000, 0.0000]

30 [ 0.9837, 1.0053] [ -20.2658, -15.7635] [ 0.0000, 0.0000]

to make a comparison of the performance of the proposed method with that of (Vaccaro et. al,
2013) and the results are shown in Tables XIII and XIV. From the results we can easily say that
the bounds for the voltage and angles are comparable to that obtained in (Vaccaro et. al, 2013).
The active power at the slack bus for 2% variation in power load measurements is [1.6903,5.9333]
using the proposed technique which also includes the values obtained by the conventional method.
Similarly, the reactive power at slack bus is [2.2970,3.1437].
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Table X. Load Flow Solution for 30 bus Interval system with variation
in variation in line parameters and load power.

Bus |V | δ(deg.) QG

1 [ 1.0600, 1.0601] [0.0000, 0.0000] [ -0.2554, -0.0813]

2 [ 1.0429, 1.0430] [ -6.3599, -4.6519] [ -0.0866, 1.0658]

3 [ 1.0186, 1.0244] [ -9.0411, -6.9902] [0.0000,0.0000]

4 [ 1.0097, 1.0160] [ -10.9208, -8.4291] [0.0000, 0.0000]

5 [ 1.0100, 1.0101] [ -16.1915, -12.5710] [ -0.2100, 0.9167]

6 [ 1.0096, 1.0145] [ -12.8703, -9.9576] [ 0.0000, 0.0000]

7 [ 1.0011, 1.0058] [ -14.8317, -11.4978] [0.0000,0.0000]

8 [ 1.0100, 1.0101] [ -13.6881, -10.5760] [ -0.6206, 1.2308]

9 [ 1.0464, 1.0556] [ -16.2297, -12.6667] [ 0.0000, 0.0000]

10 [ 1.0365, 1.0522] [ -17.9878, -14.0874] [ 0.0000, 0.0000]

11 [ 1.0820, 1.0821] [ -16.2297, -12.6667] [ 0.1268, 0.1953]

12 [ 1.0530, 1.0617] [ -17.1885, -13.4416] [ 0.0000, 0.0000]

13 [ 1.0709, 1.0710] [ -17.1885, -13.4416] [ 0.0536, 0.1546]

14 [ 1.0362, 1.0487] [ -18.1879, -14.2195] [ 0.0000, 0.0000]

15 [ 1.0307, 1.0449] [ -18.2780, -14.3036] [ 0.0000, 0.0000]

16 [ 1.0381, 1.0513] [ -17.8287, -13.9580] [ 0.0000, 0.0000]

17 [ 1.0311, 1.0472] [ -18.1770, -14.2260] [ 0.0000, 0.0000]

18 [ 1.0193, 1.0366] [ -18.9609, -14.8313] [ 0.0000, 0.0000]

19 [ 1.0160, 1.0345] [ -19.1500, -14.9792] [ 0.0000, 0.0000]

20 [ 1.0203, 1.0383] [ -18.9166, -14.8137] [ 0.0000, 0.0000]

21 [ 1.0229, 1.0413] [ -18.5032, -14.4604] [ 0.0000, 0.0000]

22 [ 1.0236, 1.0418] [ -18.4851, -14.4508] [ 0.0000, 0.0000]

23 [ 1.0184, 1.0361] [ -18.7280, -14.6224] [ 0.0000, 0.0000]

24 [ 1.0112, 1.0319] [ -18.9357, -14.7514] [ 0.0000, 0.0000]

25 [ 1.0099, 1.0279] [ -18.4867, -14.3903] [ 0.0000, 0.0000]

26 [ 0.9903, 1.0122] [ -19.0147, -14.6987] [ 0.0000, 0.0000]

27 [ 1.0185, 1.0330] [ -17.8987, -13.9573] [ 0.0000, 0.0000]

28 [ 1.0080, 1.0135] [ -13.6048, -10.5465] [ 0.0000, 0.0000]

29 [ 0.9965, 1.0155] [ -19.2896, -15.0131] [ 0.0000, 0.0000]

30 [ 0.9837, 1.0053] [ -20.2796, -15.7789] [ 0.0000, 0.0000]

6. Conclusion

In this study, a method for considering the uncertainties of the input parameters in the load
flow solution for power systems has been presented. Based on interval arithmetic, the proposed
methodology can consider the uncertainties in both the load demand and the transmission line
parameters successfully. The solutions which we have obtained from the interval arithmetic based
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Table XI. Load Flow Solution for 57 bus Interval system with variation in load power.

Bus no. V (p.u.) δ(deg.) PD QD PG QG

1 [1.06,1.06] [0.00,0.00] [0.55,0.55] [0.17,0.17] [1.69,5.93] [2.29,3.14]

2 [1.00,1.00] [-1.39,0.40] [0.02,0.03] [0.87,0.88] [0.00,0.00] [-2.16, −0.52]

3 [1.00,1.00] [-8.89, −1.29] [0.40,0.41] [0.20,0.21] [0.40,0.40] [-4.00,4.72]

4 [0.99,0.99] [-11.03, −1.53] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

5 [0.99,0.99] [-13.58, −1.25] [0.12,0.13] [0.04,0.04] [0.00,0.00] [0.00,0.00]

6 [1.00,1.00] [-14.31,-0.73] [0.74,0.75] [0.02,0.02] [0.00,0.00] [-4.85,5.55]

7 [0.98,0.99] [-13.82,1.49] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

8 [1.00,1.00] [-11.21,5.25] [1.50,1.50] [0.21,0.22] [4.50,4.50] [-4.10,3.23]

9 [1.00,1.00] [-15.56, −0.99] [1.20,1.21] [0.25,0.26] [0.00,0.00] [-5.18,6.89]

10 [0.98,0.98] [-16.43, −3.19] [0.05,0.05] [0.02,0.02] [0.00,0.00] [0.00,0.00]

11 [0.98,0.98] [-15.03, −2.27] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

12 [1.00,1.00] [-14.95, −2.68] [3.76,3.77] [0.23,0.24] [3.10,3.10] [-4.47,5.05]

13 [0.97,0.98] [-13.68, −2.59] [0.17,0.18] [0.02,0.02] [0.00,0.00] [0.00,0.00]

14 [0.97,0.98] [-12.43, −2.62] [0.10,0.10] [0.05,0.05] [0.00,0.00] [0.00,0.00]

15 [0.99,1.00] [-9.77, −2.12] [0.21,0.22] [0.05,0.05] [0.00,0.00] [0.00,0.00]

16 [1.00,1.01] [-12.11, −3.14] [0.42,0.43] [0.02,0.03] [0.00,0.00] [0.00,0.00]

17 [1.02,1.03] [-7.08, −2.30] [0.41,0.42] [0.08,0.08] [0.00,0.00] [0.00,0.00]

18 [0.98,0.99] [-15.72, −5.26] [0.27,0.27] [0.09,0.09] [0.00,0.00] [0.00,0.00]

19 [0.95,0.97] [-17.07, −6.00] [0.03,0.03] [0.00,0.00] [0.00,0.00] [0.00,0.00]

20 [0.95,0.97] [-17.11, −5.79] [0.02,0.02] [0.01,0.01] [0.00,0.00] [0.00,0.00]

21 [0.991.01] [-16.05, −4.71] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

22 [0.99,1.02] [-15.93, −4.57] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

23 [0.99,1.01] [-16.06, −4.59] [0.06,0.06] [0.02,0.02] [0.00,0.00] [0.00,0.00]

24 [0.97,1.00] [-17.31, −4.15] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

25 [0.92,0.96] [-22.70, −8.59] [0.06,0.06] [0.03,0.03] [0.00,0.00] [0.00,0.00]

26 [0.94,0.96] [-17.15, −3.80] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

27 [0.97,0.98] [-17.00, −2.22] [0.09,0.09] [0.00,0.00] [0.00,0.00] [0.00,0.00]

28 [0.98,1.00] [-16.39, −1.20] [0.04,0.04] [0.02,0.02] [0.00,0.00] [0.00,0.00]

29 [1.00,1.01] [-15.93, −0.51] [0.17,0.17] [0.02,0.02] [0.00,0.00] [0.00,0.00]

30 [0.90,0.95] [-23.39, −9.16] [0.03,0.03] [0.01,0.01] [0.00,0.00] [0.00,0.00]

31 [0.88,0.93] [-24.22, −9.95] [0.05,0.05] [0.02,0.02] [0.00,0.00] [0.00,0.00]

32 [0.91,0.95] [-23.12, −9.56] [0.01,0.01] [0.00,0.00] [0.00,0.00] [0.00,0.00]

33 [0.91,0.95] [-23.17, −9.58] [0.03,0.03] [0.018,0.01] [0.00,0.00] [0.00,0.00]

34 [0.94,0.97] [-17.64, −5.58] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

35 [0.95,0.98] [-17.35, −5.43] [0.05,0.06] [0.02,0.03] [0.00,0.00] [0.00,0.00]

36 [0.96,0.99] [-17.03, −5.25] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

37 [0.97,1.00] [-16.72, −5.09] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

38 [1.00,1.02] [-15.67, −4.51] [0.14,0.14] [0.07,0.07] [0.00,0.00] [0.00,0.00]

39 [0.97,0.99] [-16.79, −5.12] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

40 [0.96,0.99] [-17.14, −5.30] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

41 [0.99,1.00] [-18.99, −5.75] [0.06,0.06] [0.02,0.03] [0.00,0.00] [0.00,0.00]

42 [0.95,0.97] [-20.28, −6.90] [0.07,0.07] [0.04,0.04] [0.00,0.00] [0.00,0.00]

43 [1.01,1.02] [-16.21, −3.31] [0.02,0.02] [0.01,0.01] [0.00,0.00] [0.00,0.00]

44 [1.01,1.02] [-14.75, −4.31] [0.11,0.12] [0.01,0.01] [0.00,0.00] [0.00,0.00]

45 [1.03,1.04] [-12.03, −3.21] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

REC 2016 - S. Ray and S. Ralhan

394



Reliable Power Flow Analysis of Systems with Uncertain Data

Table XII. Load Flow Solution for 57 bus Interval system with variation in load power (contd.).

Bus no. V (p.u.) δ(deg.) PD QD PG QG

46 [1.05,1.07] [-13.67, −3.36] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

47 [1.02,1.04] [-14.51, −3.63] [0.00,0.00] [0.29,0.29] [0.00,0.00] [0.00,0.00]

48 [1.01,1.03] [-15.03, −4.01] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

49 [1.02,1.04] [-16.32, −4.79] [0.17,0.18] [0.08,0.08] [0.00,0.00] [0.00,0.00]

50 [1.01,1.03] [-17.47, −5.07] [0.20,0.21] [0.10,0.10] [0.00,0.00] [0.00,0.00]

51 [1.04,1.05] [-17.42, −4.18] [0.17,0.18] [0.05,0.05] [0.00,0.00] [0.00,0.00]

52 [0.96,0.98] [-17.60, −1.80] [0.04,0.04] [0.02,0.02] [0.00,0.00] [0.00,0.00]

53 [0.951,0.97] [-18.29, −2.36] [0.20,0.20] [0.10,0.10] [0.00,0.00] [0.00,0.00]

54 [0.99,1.00] [-17.83, −2.40] [0.04,0.04] [0.01,0.01] [0.00,0.00] [0.00,0.00]

55 [1.04,1.05] [-16.95, −2.05] [0.06,0.06] [0.03,0.03] [0.00,0.00] [0.00,0.00]

56 [0.94,0.97] [-20.45, −7.28] [0.07,0.07] [0.02,0.02] [0.00,0.00] [0.00,0.00]

57 [0.94,0.97] [-20.91, −7.80] [0.06,0.06] [0.02,0.02] [0.00,0.00] [0.00,0.00]

Table XIII. Load Flow Solution for 57 bus Interval system with variation in load and generator
power and in static reactive power.

Bus V (p.u.) δ(deg.) PD QD PG QG

1 [1.06,1.06] [0.00,0.00] [0.55,0.55] [0.17,0.17] [-0.42,8.06] [2.00,3.72]

2 [1.00,1.00] [-2.29,1.31] [0.02,0.03 [0.87,0.88] [0.00,0.00] [-2.92,0.34]

3 [1.00,1.00] [-12.69,2.50] [0.40,0.41] [0.20,0.21] [0.40,0.40] [-8.29,9.00]

4 [0.99,0.99] [-15.78,3.20] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

5 [0.99,0.99] [-19.74,4.90] [0.12,0.13] [0.04,0.04] [0.00,0.00] [0.00,0.00]

6 [1.00,1.00] [-21.10,6.05] [0.74,0.75] [0.02,0.02] [0.00,0.00] [-10.44,10.89]

7 [0.98,0.99] [-21.48,9.15] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

8 [1.00,1.00] [-19.45,13.49] [1.50,1.50] [0.21,0.22] [4.50,4.50] [-10.65,8.50]

9 [1.00,1.00] [-22.84,6.29] [1.20,1.21] [0.25,0.26] [0.00,0.00] [-12.92,14.76]

10 [0.97,0.99] [-23.06,3.43] [0.05,0.05] [0.02,0.02] [0.00,0.00] [0.00,0.00]

11 [0.97,0.99] [-21.40,4.09] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

12 [1.00,1.000] [-21.09,3.44] [3.76,3.77] [0.23,0.24] [3.10,3.10] [-9.96,9.89]

13 [0.97,0.99] [-19.22,2.94] [0.17,0.18] [0.02,0.02] [0.00,0.00] [0.00,0.00]

14 [0.96,0.98] [-17.34,2.28] [0.10,0.10] [0.05,0.05] [0.00,0.00] [0.00,0.00]

15 [0.99,1.00] [-13.60,1.69] [0.21,0.22] [0.05,0.05] [0.00,0.00] [0.00,0.00]

16 [1.00,1.01] [-16.59,1.33] [0.42,0.43] [0.02,0.03] [0.00,0.00] [0.00,0.00]

17 [1.01,1.03] [-9.47,0.08] [0.41,0.42] [0.08,0.08] [0.00,0.00] [0.00,0.00]

18 [0.98,1.00] [-20.95, −0.03] [0.27,0.27] [0.09,0.09] [0.00,0.00] [0.00,0.00

19 [0.94,0.98] [-22.60, −0.47] [0.03,0.03] [0.00,0.00] [0.00,0.00] [0.00,0.00]

20 [0.93,0.98] [-22.77, −0.12] [0.02,0.02] [0.01,0.01] [0.00,0.00] [0.00,0.00]
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Table XIV. Load Flow Solution for 57 bus Interval system with variation in load and generator
power and in static reactive power (contd.).

Bus V (p.u.) δ(deg.) PD QD PG QG

21 [0.98,1.03] [-21.72,0.95] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

22 [0.98,1.03] [-21.61,1.10] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

23 [0.98,1.03] [-21.79,1.14] [0.06,0.06] [0.02,0.02] [0.00,0.00] [0.00,0.00]

24 [0.96,1.01] [-23.89,2.42] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

25 [0.90,0.98] [-29.76,-1.535] [0.06,0.06] [0.03,0.03] [0.00,0.00] [0.00,0.00]

26 [0.92,0.97] [-23.83,2.87] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

27 [0.96,0.99] [-24.38,5.15] [0.09,0.09] [0.00,0.00] [0.00,0.00] [0.00,0.00]

28 [0.98,1.01] [-23.99,6.39] [0.04,0.04] [0.02,0.02] [0.00,0.00] [0.00,0.00]

29 [1.00,1.02] [-23.64,7.19] [0.17,0.17] [0.02,0.02] [0.00,0.00] [0.00,0.00]

30 [0.88,0.97] [-30.51, −2.04] [0.03,0.03] [0.010.01] [0.00,0.00] [0.00,0.00]

31 [0.85,0.96] [-31.35, −2.82] [0.05,0.05] [0.02,0.02] [0.00,0.00] [0.00,0.00]

32 [0.88,0.98] [-29.90, −2.78] [0.01,0.01] [0.00,0.00] [0.00,0.00] [0.00,0.00]

33 [0.88,0.98] [-29.97, −2.79] [0.03,0.03] [0.019,0.01] [0.00,0.00] [0.00,0.00]

34 [0.92,0.99] [-23.67,0.44] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

35 [0.93,1.00] [-23.31,0.53] [0.05,0.06] [0.02,0.03] [0.00,0.00] [0.00,0.00]

36 [0.94,1.00] [-22.92,0.63] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

37 [0.95,1.01] [-22.54,0.71] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

38 [0.99,1.03] [-21.24,1.05] [0.14,0.14] [0.07,0.07] [0.00,0.00] [0.00,0.00]

39 [0.95,1.01] [-22.63,0.71] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

40 [0.94,1.00] [-23.06,0.60] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

41 [0.98,1.01] [-25.61,0.86] [0.06,0.06] [0.02,0.03] [0.00,0.00] [0.00,0.00]

42 [0.94,0.99] [-26.96, −0.21] [0.07,0.07] [0.04,0.04] [0.00,0.00] [0.00,0.00]

43 [1.00,1.02] [-22.66,3.13] [0.02,0.02] [0.01,0.01] [0.00,0.00] [0.00,0.00]

44 [1.00,1.0388] [-19.97,0.91] [0.11,0.12] [0.01,0.01] [0.00,0.00] [0.00,0.00]

45 [1.03,1.05] [-16.44,1.19] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

46 [1.04,1.07] [-18.83,1.79] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

47 [1.01,1.05] [-19.94,1.79] [0.00,0.00] [0.29,0.29] [0.00,0.00] [0.00,0.00]

48 [1.00,1.04] [-20.54,1.49] [0.00,0.00] [0.00,0.00] [0.00,0.00] [0.00,0.00]

49 [1.01,1.05] [-22.08,0.97] [0.17,0.18] [0.08,0.08] [0.00,0.00] [0.00,0.00]

50 [1.00,1.04] [-23.67,1.13] [0.20,0.21] [0.10,0.10] [0.00,0.00] [0.00,0.00]

51 [1.03,1.06] [-24.04,2.43] [0.17,0.18] [0.05,0.05] [0.00,0.00] [0.00,0.00]

52 [0.96,0.99] [-25.50,6.08] [0.04,0.04] [0.02,0.02] [0.00,0.00] [0.00,0.00]

53 [0.94,0.98] [-26.25,5.59] [0.20,0.20] [0.10,0.10] [0.00,0.00] [0.00,0.00]

54 [0.99,1.01] [-25.55,5.31] [0.04,0.04] [0.01,0.01] [0.00,0.00] [0.00,0.00]

55 [1.04,1.05] [-24.40,5.39] [0.06,0.06] [0.03,0.01] [0.00,0.00] [0.00,0.00]

56 [0.93,0.99] [-27.03, −0.70] [0.07,0.07] [0.02,0.02] [0.00,0.00] [0.00,0.00]

57 [0.92,0.99] [-27.46, −1.25] [0.06,0.06] [0.02,0.02] [0.00,0.00] [0.00,0.00]
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load flow method encompass all the solutions obtained from conventional load flow simulations thus
guaranteeing the results. The solutions obtained by the proposed method provide more information
in qualitative terms as the values obtained also include the unknown uncertainties. Conventional
load flow solutions give only deterministic values which are approximated results.

Interval methods are often affected by overestimation, hence the computed error bounds become
overly pessimistic. Even though (Vaccaro et. al, 2010) have stated that use of interval arithmetic
in power flow analysis leads to solutions which are not useful for practical applications, alternative
evaluation schemes can be applied to overcome this problem. The dependency problem and the
wrapping effect are particular sources of overestimation in interval computations. Dependency
problem occurs due to the failure of interval arithmetic to identify the different occurrences of
the same variable. For reducing both the dependency problem and the wrapping effect, interval
arithmetic has been extended with symbolic computations using Taylor models in (Neher, Jackson
and Nedialkov, 2007). The dependency problem can be also eliminated by applying a suitable
extension of the Jacobian matrix as discussed in (Kearfott, 1991). Consequently, this technique can
be made computationally more robust and reliable, thus yielding better and accurate solutions.

Load flow analysis helps to ensure that cables, transformers, lines are sized properly to carry the
variable load. From the results, it can be determined whether the system voltages remain within
specified limits and the equipments are not getting overloaded. The profiles of bus voltages and
angles help us to identify real and reactive power flows and minimize the transmission losses. Load
flow studies become important in planning and expansion while ensuring that each generator runs
within the specified limits and demand be met without overloading the power infrastructure. The
reactive power bounds provide us an information regarding the injection of reactive power into the
system, in order to keep the power factor close to unity.

Also, in the initial stages of planning and design studies of power systems, the proposed technique
will be useful to save time, effort, and the resources required. The results obtained by the proposed
method take into account the demand error which is very significant, whence, the load uncertainty
is not accounted for, the load flow solutions obtained would be a ’snapshot’ for a single specific
configuration and operating conditions of the power system. If uneven variations in active and
reactive powers in different buses are considered then we can arrive at a more realistic solution.
The same is being considered as a part of the future work.

New techniques that are computationally robust and reliable are needed for the analysis of power
systems with uncertainties, especially in view of the increasing use of renewable power sources,
such as wind, hydro and solar power which are highly variable. However, using interval arithmetic
computational requirements are greater than the conventional load flow methods.
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